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ABSTRACT
In this paper we report on the LIMSI Nov96 Hub4 system for

transcription of broadcast news shows. We describe the develop-
ment work in moving from laboratory read speech data to real-
world speech data in order to build a system for the ARPA Nov96
evaluation. Two main problems were addressed to deal with the
continuous flow of inhomogenous data. These concern the var-
ied acoustic nature of the signal (signal quality, environmental and
transmission noise, music) and different linguistic styles (prepared
and spontaneous speech on a wide range of topics, spoken by a
large variety of speakers).

The speech recognizer makes use of continuous density HMMs
with Gaussian mixture for acoustic modeling andn-gram statistics
estimated on large text corpora. The base acoustic models were
trained on the WSJ0/WSJ1 corpus, and adapted using MAP es-
timation with 35 hours of transcribed task-specific training data.
The 65k language models are trained on 160 million words of
newspaper texts and 132 million words of broadcast news tran-
scriptions. The problem of segmenting the continuous stream of
data was investigated using 10 MarketPlace shows. The overall
word transcription error of the Nov96 partitioned evaluation test
data was 27.1%.

INTRODUCTION
The goal of the ARPA Hub4 task is to transcribe radio

and television news broadcasts. The shows contain sig-
nal segments of various acoustic and linguistic nature, with
abrupt or gradual transitions between segments. The sig-
nal may be of studio quality or have been transmitted over
a telephone or other noisy channel (ie., corrupted by addi-
tive noise and nonlinear distorsions), as well as speech over
music and pure music segments. The speech is produced
by a wide variety of speakers: news anchors and talk show
hosts, reporters in remote locations, interviews with politi-
cians and common people, unknown speakers, new dialects,
non-native speakers, etc. The linguistic style ranges from
prepared speech to spontaneous speech. Acoustic models
trained on clean, read speech, such as the WSJ corpus, are
clearly inadequate to process such inhomogeneous data.

Our development work aimed at addressing the two prin-
ciple types of problems encountered in transcribing broad-
cast news data: those relating to the varied acoustic prop-

erties of the signal, and those related to the linguistic prop-
erties of the speech. Problems associated with the acoustic
signal properties are handled using appropriate signal anal-
yses, by classifying the signal according to segment type
and by training specific acoustic models for the different
acoustic conditions. The first step in dealing with the inho-
mogeneous data was to develop a segment classifier, so as
to divide the data into the main different segment types. The
segment classifier was developed and evaluated using Mar-
ketPlace data. Even though the evaluation was carried out
using partitioned data, the segment classifier was used to de-
tect unlabeled bandlimited speech. In the partitioned eval-
uation, the focus conditions correspond to different speak-
ing styles (prepared or spontaneous speech) and to differ-
ent acoustic environments (high quality, degraded acoustic
conditions, and speech over music). In contrast to previous
evaluations using read-speech data where the longest sen-
tences were on the order of 30s, the partitioned segments
can be several minutes long. Therefore a chopping algo-
rithm was developed so as to limit to 30s the amount of data
to be processed as a single unit.

In order to address variability observed in the linguis-
tic properties, we analyzed differences in read and sponta-
neous speech, with regard to lexical items, word and word
sequence pronunciations, and the frequencies and distribu-
tion of hesitations, filler words, and respiration noises. As a
result of the analysis, the phone set was enlarged to explic-
itly model filler words and breath noise, resulting in spe-
cific context-dependent acoustic models. These phenom-
ena were also explicitly represented in the language model.
Compound words were introduced as a means of modeling
reduced pronunciations for common word sequences.

Our 1996 Hub4 system uses the same basic technology
as used in previous evaluations, that is continuous den-
sity HMMs with Gaussian mixture for acoustic modeling
and n-gram statistics estimated on large text corpora for
language modeling. Acoustic modeling uses cepstral pa-
rameters derived from a Mel frequency spectrum estimated
on the 0-8kHz band (0-3.5kHz for telephone speech mod-
els) every 10ms. Each phone model is a tied-state left-to-



right, CDHMM with Gaussian mixture observation densi-
ties (about 32 components). The modeled triphone con-
texts were selected based on their frequencies in the train-
ing data, with backoff to right-context, left-context, and
context-independent phone models. Word recognition is
carried out in two passes for each speech segment. In the
first pass a word graph is generated using a bigram language
model and in the second pass decoding uses the word graph
generated by the 1st pass and a trigram language model.

In the remainder of this paper we provide an overview
of the development work carried out in preparation for the
Nov96 Hub4 evaluation. The initial word error of 39.2%
obtained using our Nov95 Hub3 65k word recognizer was
reduced to 25.2% on the Nov96 development data.

DEVELOPMENT WITH MARKETPLACE

Our 65k word recognizer developed for the Nov95 ARPA
NAB evaluation [6, 5] was used to recognize a MarketPlace
radio show taken from the Nov95 Hub4 sample training
data distributed by NIST[1]. The wideband acoustic mod-
els were trained on the WSJ0/1-si355 training data con-
taining a total of 46k sentences[6], comprised of 37k sen-
tences from the WSJ si284 corpus, 130 sentences/speaker
from 57 long-term and journalist speakers in WSJ0/1, and
1218 sentences from 14 of the 17 additional WSJ0 speak-
ers not included in si284. Only the data from the close-
talking, Sennheiser HMD-410 microphone was used. For
telephone speech models, we used telephone channel mod-
els developed for the Hub2 test in 1994[3]. These mod-
els were trained on a bandlimited version of the WSJ si284
corpus, and adapted using MAP estimation[7] with 7k WSJ
sentences of telephone speech data taken primarily from the
Macrophone corpus. No task-specific acoustic training data
was used. For language modeling data, we used newspa-
per texts and read speech transcriptions predating July 30,
1995. This data includes the August’94 release of the CSR
standard LM training texts distributed by LDC (years 88-
94), the 1994 NAB development data (excluding the devtest
data), the WSJ0/WSJ1 read speech transcriptions (85,343
sentences), and the 1994 and 1995 financial domain mate-
rial (Hub3 LM material).

A segmentation algorithm was developed using nine half-
hour MarketPlace shows as task-specific training data (1
show was kept aside to test the segmenter). A small left-
to-right tied mixture HMM with 64 Gaussians was built for
each of the following signal types: background noise, pure
music, speech on music, wide-band speech, and telephone
speech. The models were trained using the segmentations
and labels provided by BBN[8]. Viterbi decoding on the 5
models (fully connected) is used to segment the data and
assign each speech frame to one of the 5 classes.

A show is transcribed as follows: First the show is seg-
mented using the tied mixture models. Segments identified

Identified class
Test data S T MS M
Wide-band speech (S) 99.9 0.0 0.0 0.0
Telephone speech (T) 1.2 98.8 0.0 0.0
Music+speech (MS) 32.0 0.0 66.4 1.6
Music (M) 7.5 0.0 1.7 90.8

Table 1: Segmentation results in terms of the percentage of frames
correctly and incorrectly classified for each class of data.

as background noise and pure music are discarded. The tele-
phone speech segments are then decoded with the telephone
speech models and all the other segments are decoded using
the wideband models. Unsupervised MLLR adaptation [9]
is performed using all the data of a given type in the cur-
rent show. Since sentence boundaries are not known,each
segment is decoded as a single unit.

The spectrograms in Figure 1 show examples of the
broadcast news data along with the reference (manual) and
automatically determined segmentations. The top spectro-
gram shows three segments, a sequence of music (M), mu-
sic+speech (MS), followed by music. Theboundaries de-
limiting the speech are somewhat difficult to locate. The
most difficult of these boundaries occur where music is fad-
ing in or out. The lower spectrogram shows a portion of
wideband speech surrounded by telephone speech (T). The
bandlimiting is clearly visible and easily detected by the
system.

The segmentation error at the 10 ms frame level on the
complete MarketPlace show kept aside for development was
6%. As can be seen in Table 1 most of the segmentation er-
rors are due to the misclassification of the music+speech
frames (32.0% are classified as speech) and the music
frames (7.2% are classified as speech). Music+speech
frames are often classified as speech when the music is fad-
ing out because the signal is not very different from a speech
signal with slight background noise. In this show there were
no segments labeled as noise (N) by the transcribers, and no
noise segments were detected by the segmenter.

The overall word error rate of the transcription for the
same MarketPlace show is 24.6%. The error rate is seen
to be much lower on wideband speech (16.2%), and much
higher on telephone speech (42.6%) and music+speech
(37.1%). The higher error rate observed for the telephone
speech is not only due to the channel (reduced bandwidth
and possible distortions), but also to the fact that most of
this speech is spontaneous in nature, whereas much of the
wideband speech is prepared. Also contributing to the over-
all error rate are insertions due to words recognized in a
few music segments which are erroneously labeled as mu-
sic+speech.

DEVELOPMENT WITH BROADCAST NEWS
For the Nov96 evaluation, the scope of the task was en-

larged to include multiple sources of broadcast news (ra-



Figure 1: Spectrograms illustrating segmentations of sequences extracted from a MarketPlace radio broadcast. Theupper transcript is
the reference, and the lower is the result of automatic segmentation. The labels are: S (wideband speech), T (telephone speech), MS
(music+speech), and M (music).

dio, TV) and different types of shows (such as CNN Head-
line News, NPR All Things Considered, ABC Prime Time
News). The test data included episodes of shows not ap-
pearing in the training material. The 1996 evaluation con-
sisted of two components, “partitioned evaluation” com-
ponent (PE) and the “unpartitioned evaluation” component
(UE). All sites were required to evaluate on the PE, which
contains the same material as in the UE, but has been man-
ually segmented into homogeneous regions, so as to control
for the followingfocus conditions[11]:

F0- Baseline broadcast speech
F1- Spontaneous broadcast speech
F2- Speech over telephone channels
F3- Speech in the presence of background music
F4- Speechunder degraded acoustical conditions
F5- Speech fromnon-native speakers
Fx- All other combinations

About 35 hours of transcribed task-specific training data
were available. These data were obtained from the fol-
lowing shows: ABC Nightline, ABC World News Now,
ABC World News Tonight, CNN Early Edition, CNN Early
Prime, CNN Headline News, CNN Prime News, CNN The
World Today, CSPAN Washington Journal, NPR All Things
Considered, and NPR MarketPlace.

The development data were taken from 6 shows: ABC
Prime Time, CNN World View, CSPAN Washington Jour-

nal, NPR MarketPlace, NPR Morning Edition, and NPR
The World.

Using our Nov95 Hub3 65k word recognizer, an initial
word error 39.2% was obtained on the Nov96 development
data. The available acoustic and language model training
data were used to generate a new vocabulary list and lan-
guage models, to extend the pronunciation lexicon, and to
train type-specific acoustic models for the different acous-
tic data types. With the final setup used for the evaluation,
a word error of 25.2% was obtained on the same develop-
ment test set. In the remainder of this section, we describe
our 1996 Hub4 system.

Acoustic features
The speech analysis is relatively standard, but differs

in a few points from what we have used in previous
evaluations[6]. A 30ms analysis window is used with a
10ms frame step. For each frame the Mel scale power spec-
trum is computed, and the cubic root taken followed by an
inverse Fourier transform. Then LPC-based cepstrum coef-
ficients are computed. The cepstral coefficients are normal-
ized on a segment basis using cepstral mean removal and
variance normalisation. Thus each cepstral coefficient for
each segment has a zero mean and unity variance. The 39-
component acoustic feature vector consists of 12 cepstrum
coefficents and the log energy, along with the first and sec-
ond order derivatives. This feature vector has fewer param-



eters than the 48-component feature vector used previously,
but has better performance on the Hub4 data (3% relative
gain).

Acoustic models
Different acoustic model sets were trained to address dif-

ferent aspects of the problem, such as segmentation, sex-
identification, and word decoding. Gaussian mixture mod-
els (64-components) similar to those used for segmentation
as described for the MarketPlace data, were used to sep-
arate telephone and wideband speech. For each segment,
type-specific Gaussian mixture models were used to iden-
tify the sex of the speaker. For word decoding, type-specific
acoustic model sets, similar to last year’s Hub3 models[5]
were used.

Various approaches were investigated to build acoustic
models from the available WSJ-si355 and Hub4 training
data. The most effective solution for our system was the
following:

1. Train large sets of gender-dependent tied-state models on
the secondary channel of the WSJ0/1-si355 data. The re-
sulting acoustic model sets, M0, contained 7000 mixture
distributions. These models were not used for the evalu-
ation.

2. Use MAP estimation techniques to adapt the M0 seed
models to the Hub4 1994 and 1995 training data, provid-
ing the baseline Hub4 model sets M1 (0-8kHz band) for
the F0 and F1 data, and M2 (bandlimited to 0-3.5kHz)
for use with the F2 data.

3. For the F3 and F4 conditions, adapt the M1 models us-
ing phone-based (one full regression matrix per phone)
supervised MLLR and the F3 and F4 parts of the train-
ing data, resulting in models M3 and M4, respectively.

4. For the F5 data (non-native speakers), adapt the M0
models to British English data (WSJ0CAM)[10] prior
to adaptation with the Hub4 training data to create the
model set M5.

5. Unsupervised MLLR adaptation is carried out for each
test segment prior to the final decoding pass.

The M1 models were used to process the F0 and F1 seg-
ments. The M2 models were used to process the F2 seg-
ments, as well as all other segments labeled as telephone
speech by the Gaussian classifier. The M3, M4, and M5
models were used to process the F3, F4, and F5 data re-
spectively. The model set to process the Fx segments was
selected as follows:

if (telephone-data)useM2 models

else if(non-native-speaker)useM5 models

else if(background-noise)useM4 models

else useM1 models

where the telephone decision was based on the output of
the Gaussian segment classifier, and all other attributes were
taken from the provided segment annotation.

The different model types described above aim to deal
with the varied acoustic conditions found in the Hub4 data.
In order to better model the observed speaking styles, 2 new
phone symbols were added to the existing phone set to ex-
plicitly model filler words and breath noises. These new
phones were only trained with the Hub4 acoustic data since
they are infrequent in the WSJ read-speech data.

For computational reasons, a smaller set of acoustic
models was used in first bigram pass used to generate a
word graph. These position-dependent, cross-word triphone
models cover about 3500 contexts, with 6000 tied states and
32 Gaussians per state. For trigram decoding a larger set
of 5300 position-independent, cross-word triphone models
with 7000 tied states was used. The modeled triphone con-
texts were selected based on their frequencies in the WSJ
training data. For the breath noise and filler word specific
phones, the contexts were selectedaccording to their ob-
served frequencies in the Hub4 training data. In total there
were 20 model sets: 5 conditions� 2 genders� 2 decoding
passes.

Language models
The language models were trained on newspaper texts

(the 1995 Hub3 and Hub4 LM material – 161M words), on
the broadcast news (BN) transcriptions (years 92-96, 132 M
words), and the 430 K words in the transcriptions of the
1995-1996 acoustic training data.

The 1995 Hub3 and Hub4 LM training texts were repro-
cessed as was done previously to clean errors inherent in the
texts or arising from the preprocessing tools. They were also
transformed to be closer to the observed American reading
style[4].

The BN training texts were cleaned in an analogous man-
ner to the previous text materials. However, since in the
BN texts word fragments are represented with a “hyphen”,
compound words were not split in the version distributed by
LDC. We retreated all the transcriptions in order to split hy-
phenated words, as the occurrence of word fragments was
marginal compared to other situations where the hyphen
needed to be treated.

The 65k recognition vocabulary included all words oc-
curring in the transcriptions (17883 from the 1996 BN tran-
scripts and 6332 from 1995 MarketPlace), completed with
the most common words found in the texts. The LMs and
vocabulary selection were optimized on the 1996 Hub4 de-
velopement test set. The resulting lexical coverage on the
1996 Hub4 devtest data is 99.34%.

We experimented with different weighting factors for the
available text materials and transcripts. The perplexities as
a function of type of data are given in Table 2 comparing



Hub+BN Hub+BN+3�trn Hub+BN+10�trn

F0 199 193 190
F1 150 148 147
F2 140 139 138
F3 228 227 221
F4 261 263 262
F5 181 177 177
Fx 175 173 173
Overall 180 177 175

Table 2: Perplexity with a trigram LM as a function of the weight-
ing factor applied to the acoustic training transcriptions.

BN+10�trn Hub+BN+10�trn

F0 351 320
F1 239 255
F2 221 228
F3 380 356
F4 473 409
F5 325 304
Fx 296 297
Overall 302 295

Table 3: Perplexities of the bigram LMs with compound words.

weighting factors of 0, 3 and 10 for the acoustic training
transcripts. A weight of 10 ensured that all trigrams oc-
curring in the transcriptions were included in the LM. As
shown in Table 2, weighting the training transcripts by 10
gave a slight, yet consistent improvement in perplexity, and
also led to a relative increase in word accuracy on the F0
devtest data of 2%. The addition of other newspaper texts
from any date led to a degradation both in terms of perplex-
ity on the Hub4 devtest texts and recognitionaccuracy.

The 1996 training transcripts were processed to map filler
words (such as UH, UM, UHM) to a unique formfFWg,
and the frequencies of filler words and breath noises were
estimated for the different types of segments. These es-
timates were used in reprocessing the text materials. For
breath noises, the observed proportion is different for the
different segments (about 4.5% for the F0 and F1 segments,
but only about 3% in the F3 and F4 segments). We hy-
pothesized that the lower proportion in the F3 and F4 seg-
ments was an artifact due to the background music and
noise which may have masked the breath noises. We also
observed that while most breath noises appear at phrase
boundaries, they also occur at other locations. We thus de-
cided to process all of the training texts (1995 Hub3 and
Hub4 and BN training texts) adding a fixed proportion of
breath (4%), mostly near punctuation markers, respecting a
minimum and maximum distance between two breath mark-
ers. A larger difference across segment types was observed
for filler words, from 0.25% in prepared speech to about 3%
in spontaneous speech. However, even though the global

proportions were different, the filler words tend to occur in
similar contexts for the different segment types.
After systematic examination of their relative proportions
in the training transcriptions, we constructed a “degrading”
filter which adds filler words in the text with a parametriz-
able global proportion, so that the relative proportion of the
fillers near specific common words was similar to that ob-
served in the training transcription.

The resulting language models were tested using perplex-
ity and recognition word error. Construction of different
LMs for prepared and spontaneous speech according to the
proportion of fillers found in the transcriptions, led to a gain
in terms of perplexity, but did not reduce the recognition
word error. We found that adding a small proportion of
filler words (0.5%) improved the recognitionaccuracy, but
adding a large proportion (3-5%) reduced performance.

As was done last year, the training texts were processed
to treat the 1000 most frequent acronyms as whole words
instead of as sequences of independent letter. This year
we also added 300 compound words for common word se-
quences.

We split the different segments into 2 homogeneous
groups from the LM point of view: one group correspond-
ing to prepared speech with F0, F3, F4, F5 segments, and
the other to spontaneous speech with F1, F2 segments. For
the 1st bigram decoding pass, different LMs were used for
prepared speech (cut-off 8, 2M bigrams) and spontaneous
speech (cutoff 3, 1.9M bigrams). In the latter case the news-
paper training texts were not used. The bigram perplexities
for these two language models are given in Table 3 for the
different data types. For the spontaneous speech data (F1
and F2), a lower perplexity is obtained when the LM is es-
timated on only the Broadcast News transcriptions. Using
this LM also gave a relative word error reduction of 2% on
the spontaneous speech portions of the development data.
For the prepared speech a lower perplexity is obtained when
the newspaper texts are included in the training material.

For the 2nd pass, while the use of different trigrams for
prepared and spontaneous speech LMs led to a gain in terms
of perplexity, the word accuracy was worse on the devel-
opment data. We therefore used a single 65k trigram LM
trained on all the texts mentioned above (cut-off 1-2, 7.6M
bigrams and 13.4M trigrams).

Recognition Lexicon
The 65k vocabulary contains 64,968 words and 72,488

phone transcriptions. Pronunciations are based on a 48
phone set (3 of them are used for silence, filler words, and
breath noises). The filler and breath phones were added
to model these effects, which are relatively frequent in the
broadcast emissions, and are not used in transcribing other
lexical entries. The training and test lexicons were created
at LIMSI and include some input and/or derivations from
the TIMIT, Pocket and Moby lexicons. A pronunciation



WHAT DID YOU waftgdIdyu
waftgdIdyx waftgdIJx w[ax]Jx

I DON’ T KNOW Ydonftgno
Yd^no Ydno

DON’ T KNOW donftgno
d^no

LET ME lEtmi
lEmi

LET HIM lEthIm
lEtM lEm

I AM Y@m
Yxm Ym

GOING TO gojGt[ux]
g[^c]nx

Figure 2: Some example compound words and their pronuncia-
tions. Original concatenated pronunciation (1st line) and reduced
forms (2nd line).

Figure 3: Spectrogram of the word sequence “what did you see”
(file e960521a).

graph is associated with each word so as to allow for alter-
nate pronunciations, including optional phones. Frequently
occuring inflected forms were verified to provide more sys-
tematic pronunciations.

This year 12,300 new words were added to the LIMSI
master lexicon for American English, which contains 95k
entries. The new words consisted of 3800 entries to cover
1996 BN training data and an additional 8500 forms in-
cluded in the new 65k LM. Many of the new words were
proper names, whose pronunciations could be verified only
if the word appeared in the training data.

As in last year’s system, the lexicon contains the most
common 1000 acronyms found in the training texts[5]. This
year compound words were used to represent frequent word
sequences which provided an easy way to allow reduced

Figure 4: Spectrogram of the word sequence “what did you wear”
(file j960521d).

Figure 5: Spectrogram of the word sequence “what did you think
of that” (file i960531).

pronunciations such as /l"mi/ for “let me” and /ĝ nx/ for
“going to”. Some example compound words and their pro-
nunciations are given in Table 2. The first line corresponds
to the original pronunciation formed by concatenation of the
component words. The second line contains reduced forms
added for the compound word.

Example spectrograms of sentences including the word
sequence “what did you” are shown in Figures 3 - 5. In the
first spectrogram, the speaker said all three words clearly
and palatalized the /dy/ into a /J/. In the second, the speaker
produced a flap for the combined final /t/ in “what” and the
initial /d/ in “did”. In the third example, the sequence was
reduced to /ŵJx/.



Decoding
Prior to decoding, segments longer than 30ms are

chopped into smaller pieces so as to limit memory required
for the trigram decoding pass. The chopping algorithm is
as follows. A bimodal distribution is estimated by fitting a
mixture of 2 Gaussians to the log-RMS power for all frames
of the segment. This distribution is used to determine loca-
tions which are likely to correspond to pauses, thus being
reasonable places to cut the segment. Cuts are made at the
most probable pause 15s to 30s from the previous cut. A
Gaussian classifier is then used to estimate the gender for
each segment using different model sets for each condition,
and to label the Fx data as either wideband or telephone
band.

Word recognition is performed in three steps: 1) word
graph generation, 2) trigram pass, 3) segment-based acous-
tic model adaptation. A word graph is generated using a
bigram backoff language model. This step uses a gender-
specific sets of position-dependent triphones with about
6000 tied states and a small bigram language model (about
2M bigrams). Differents acoustic models are used for the
different segment types. The model set is chosen based
on the segment label. The sentence is then decoded us-
ing the word graph generated in the first step with a large
set of acoustic models (position-independent triphones with
about 7000 tied states) and a trigram language model (in-
cluding 8M bigrams and 13M trigrams). Finally, unsuper-
vised acoustic model adaptation is performed for each seg-
ment using the MLLR scheme, prior to the last decoding
pass with the adapted models and the trigram LM.

Experimental results
The performance of the system at various stages of the

development process is shown in Figure 6. The word error
on the devtest data with M0 models and last year’s Hub3
LM was 39.2%. Word graphs generated with the M0 mod-
els were then used to evaluate different acoustic and lan-
guage models. The use of segment-based adaptation of the
acoustic models gives a small improvement of 4% relative.
Using type-specific acoustic models (sets M1 through M5)
reduced the word error to 34.9% (7% relative). The com-
bined use of the type-specific acoustic models and a lan-
guage model trained on the Hub4 data resulted in a word
error of 30.9%, an additional relative error reduction of 9%.
After generating word graphs with type-specific acoustic
models and the Hub4 LM, a word error of 25.2% was ob-
tained. The use of WSJCAM0 data reduces the word error
on F5 devdata by 12% (not shown in the figure).

The evaluation test data were taken from 4 shows. The
overall word error rate is 27.1% and the per show word
errors are the following: CNN Morning News (29.7%),
CSPAN Washington Journal (25.6%), NPR The World
(30.5%) and NPR MarketPlace (23.0%). The word error
by segment type is given in Table 4, along with the results

M0 models, Hub3 LM,
without adaptation ) 39.2%

M0 models, Hub3 LM,
with adaptation ) 37.5%

M1 to M5 models, Hub3 LM,
(M0 graphs) ) 34.9%

M1 to M5 models, Hub4 LM
(M0 graphs) ) 30.9%

Generate graphs with M1 to M5,
Hub4 LM ) 25.2%

Figure 6: Performance progression on the 1996 development data.
The model set M0 was used in development work, but not in the
final system. These models were adapted to the focus conditions
using the BN training data, resulting in model sets M1-M5.

Development data Evaluation data
Label Duration WordErr Duration WordErr

F0 25 min 11.5% 31 min 20.8%
F1 28 min 25.6% 32 min 26.0%
F2 19 min 34.3% 10 min 27.1%
F3 11 min 22.0% 7 min 20.3%
F4 16 min 19.0% 9 min 33.3%
F5 9 min 19.5% 2 min 27.8%
Fx 19 min 43.7% 14 min 46.1%

Overall 127 min 25.2% 106 min 27.1%

Table 4: Word error rates for the PE on the 1996 devdata and
official NIST results on the evaltest data. (F0: baseline broad-
cast speech, F1: spontaneous broadcast, F2: speech over telephone
channels, F3: speech in background music, F4: speech under de-
graded acoustic conditions, F5: non-native speakers, FX: other)

on the development data. While there are substantial differ-
ences across the focus conditions, the overall error rates are
comparable for the two data sets.

The word error on the F0 devdata is about half that of
other conditions. The same is not true for the eval data, par-
tially due to a long weather report which was spoken very
quickly and had a high OOV rate. Speech over background
music (F3) appears to be easier to handle than speech in
noisy conditions (F4). This may be because speech over
music usually occurs at the beginning and end of broadcasts,
and is meant to be intelligible.

SUMMARY

In this paper we have described the LIMSI Nov96 Hub4
system and the development work in preparation for the
evaluation. The 1996 Hub4 system uses the same basic
technology as used in previous evaluations, that is contin-
uous density HMMs with Gaussian mixture for acoustic
modeling andn-gram statistics estimated on text data for
language modeling. It is a multipass system, with more



accurate acoustic and language models used in successive
passes. Segment-based unsupervised adaptation is carried
out prior to the final trigram decoding pass.

Our development work addressed primarily two problems
encountered in transcribing broadcast news data: those re-
lating to the varied acoustic properties of the signal, and
those related to the linguistic properties of the speech. To
deal with the varied acoustic conditions, the base acous-
tic models were trained on the secondary channel of the
WSJ0/1 corpus, instead of the Sennheiser channel. Type-
specific acoustic models were estimated for the different fo-
cus conditions using the 35 hours of task specific training
data. To deal with the continuous flow of data, a chopping
algorithm was developed so as to limit the amount of data
to be processed as a single unit. New phones were added
so as to explicitly model filler words and breath noises, as
these phenomena are frequent in the broadcast news data.
These effects were also directly represented in the language
model. The development test data was used to optimize the
recognition vocabulary and language models. Over 12000
new words were added to the lexicon, as well as com-
pound words to allow modeling of reduced forms observed
in spontaneous speech.

The problem of segmenting broadcast news shows has
been investigated using 10 MarketPlace shows distributed
as Nov95 training data. Compared to reference labels pro-
vided by BBN, the frame classification rate was 94%.

Using our Nov95 Hub3 65k word recognizer trained on
the secondary channel of the WSJ corpus, an initial word
error 39.2% was obtained on the Nov96 development data.
After the development period, a word error of 25.2% was
obtained on the same development test data with the evalua-
tion setup. On the partitioned evaluation data from 4 shows,
an overall word error of 27.1% was obtained (official NIST
score).
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